Measuring well quasi-orders and complexity of verification

PhD defense of Isa Vialard

PhD advisor: Philippe Schnoebelen, Directeur de recherche, CNRS, LMF July 3, 2024

Definitions: Quasi-order

Î											
	0	0	0	0	0	0	0	\mathbb{N}	X	\mathbb{N}	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	(0,1)	0	0	0	0	0	0	0	0	0	
	(0,0)	0	0	0	0	0	0	0	0	0	

Quasi-order:

reflexive,transitive, can be partial

Definitions: Quasi-order

0 V V V V V V V V V V V \vee \vee \vee V V V V VV V 0 < 0 < 0 < 0 < 0 < 0V \vee \vee \vee V V V V V V V 0 < 1V V V V V V V V V V V V V V

Quasi-order:

reflexive,transitive, can be partial

Ex: $(2,3) \leq_{\times} (5,4)$ but $(1,2) \perp (2,1)$

Some interesting sequences

 \circ < \circ < V V \vee \vee \vee V V V V V \vee \vee \vee \vee V V V V \vee V V V V V V V V V V V / \vee \vee 0 < 0 < 0 < 0 < 0**ॉ**< o < o < o < o < o V V \mathbf{V} V V \vee V V V V \vee V V./ V V V (0,1) < 0✓< 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0<</p> \vee \vee \vee \vee \vee \vee \vee \vee \vee

- decreasing sequence

(5,5) > (4,4) > (4,3) > (2,3) > (1,1)

Some interesting sequences

- decreasing sequence
- incomparable sequence (or antichain)
 i.e. pairwise incomparable
- $(1,9) \perp (3,8), (4,7), (7,5), \ldots$

Some interesting sequences

- decreasing sequence
- incomparable sequence (or antichain)
 i.e. pairwise incomparable

bad sequence
 i.e. pairwise non increasing

 $(1,9) \leq (3,8), (4,7), (7,5), \dots$

- decreasing sequence
- antichain i.e. pairwise incomparable
- bad sequence
 i.e. pairwise non increasing

No infinite antichain or decreasing seq

 $< \circ < < (\mathbb{N} \times \mathbb{N}, \leq_{\times})$ < < < > $< \circ < \circ$ Ο 0 V V \vee V \vee 0 V V < 0 < 0 < 0 < 0 < 0 < 00 <0 V \vee \vee \mathbf{X} \vee 0 < 0 < 0 < 0 <(< 0 < 0 < 0)V V V 0 < 0 < • < 0 < 0 < 0 < 0 < 0 \vee V Ο V (0,1) < 0V V V

- decreasing sequence
- antichain i.e. pairwise incomparable
- bad sequence
 i.e. pairwise non increasing

WQO ‡

No infinite antichain or decreasing seq

WQO

\updownarrow

Some see wqos as wells Blass & Gurevich (2008)

No infinite antichain or decreasing seq

 \uparrow

Some see wqos as wells Blass & Gurevich (2008)

Others see chairlift queue My parents (2023)

WQO ĴĴ

No infinite antichain or decreasing seq

 \uparrow

Some see wqos as wells Blass & Gurevich (2008)

Others see chairlift queue My parents (2023) No infinite antichain or decreasing seq

WQO

1

 \mathbf{r}

- Reasons to study wqos
 - "It is fun" (Kříž & Thomas (1990))

• Reasons to study wqos

- "It is fun" (Kříž & Thomas (1990))
- Applications in proof theory, term rewriting, graph theory, ... and program verification!

Reasons to study wqos

- "It is fun" (Kříž & Thomas (1990))
- Applications in proof theory, term rewriting, graph theory, ... and program verification!

Well-structured transition systems

Finkel (1994), Abdulla& Jonsson (1996)

- Set of configurations: WQO
- \leq a simulation relation

Reasons to study wqos

- "It is fun" (Kříž & Thomas (1990))
- Applications in proof theory, term rewriting, graph theory, ... and program verification!

Well-structured transition systems

Finkel (1994), Abdulla& Jonsson (1996)

- Set of configurations: WQO
- \leq a simulation relation

 Ex: Counter machines, Petri nets, VASS, Lossy channel systems . . .

Vector Addition Systems with States

Well-structured transition systems

Finkel (1994), Abdulla& Jonsson (1996)

- Set of configurations: WQO
- \leq is upward-compatible

• Ex: Counter machines, Petri nets, VASS, Lossy channel systems . . .

Complexity and expressiveness

Schmitz& Schnoebelen(2011)

- Controlled bad sequences (even decreasing, or antichains)
- Can we bound the length of controlled sequences by measuring wqo?

Measuring wqos

Natural notions of measure when finite

Finite subsets of $\{1, 2, 3, 4\}$ ordered by \subseteq .

Let's extend height and width to infinite wqos

Crash course on ordinal numbers

Enumerate well-orders (i.e. linear wqos)

Cantor(1883)

 $0 < 1 < \ldots < n < \ldots$

Crash course on ordinal numbers

Enumerate well-orders (i.e. linear wqos)

Cantor(1883)

Enumerate well-orders (i.e. linear wqos)

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top Limit: Infinite union of increasing well-orders is well-ordered

 $\omega < \omega + 1 < \dots < \omega + n < \dots$ $0 < 1 < \dots < n < \dots$

Crash course on ordinal numbers

Enumerate well-orders (i.e. linear wqos)

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top Limit: Infinite union of increasing well-orders is well-ordered

 $\begin{array}{rcl} \omega \cdot n < & \dots \\ \vdots \\ \omega \cdot 2 < & \dots \\ \omega & < \omega + 1 < & \dots & < \omega + n < & \dots \\ 0 & < & 1 & < & \dots & < & n & < & \dots \end{array}$

• Enumerate linear wqos

Cantor(1883)

Ordinal as transitive sets: $\alpha = \{ \ \beta < \alpha \ \}$

> $\omega \cdot n < \dots$ \vdots $\omega \cdot 2 < \dots$ $\omega < \omega + 1 < \dots < \omega + n < \dots$ $0 < 1 < \dots < n < \dots$

Enumerate linear wqos

Cantor(1883)

Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Union of increasing sequence of well-orders is well-ordered

Enumerate linear wqos

Cantor(1883)

Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Infinite union of increasing well-orders is well-ordered

... ω" $< \omega^{\omega}$ ω^{2} ... $\omega \cdot n < \dots$ L $\omega \cdot 2 < \ldots$ $\omega < \omega + 1 < \ldots < \omega + n < \ldots$ $0 < 1 < \ldots < n < \ldots$

Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Infinite union of increasing well-orders is well-ordered

 ω^{2} ... $\omega \cdot n < \dots$ L $\omega \cdot 2 < \ldots$ $\omega < \omega + 1 < \ldots < \omega + n < \ldots$ $0 < 1 < \ldots < n < \ldots$

Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Infinite union of increasing well-orders is well-ordered

 $< \omega^{\omega} < \omega^{\omega^{\omega}} < \ldots < \omega^{\omega^{\cdots}} < \ldots$ ω^2 $\omega \cdot n < \dots$ L $\omega \cdot 2 < \ldots$ $\omega < \omega + 1 < \ldots < \omega + n < \ldots$ $0 < 1 < \ldots < n < \ldots$

•

 \mathcal{E}_0

Let's extend height and width to infinite wqos with ordinals

 \circ < \vee \mathbb{N} imes \mathbb{N} \circ < \circ \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee

Width and height: at least ω

Let's extend height and width to infinite work with ordinals

 \bigvee VV V V V V V V V V V V V V V V V V < Q < 0 < 0 < 0 < 0 < 0 < 0 < 00 < 0 < 0 < 0 < 0< 0< 0 < 0(0. < 0< 0 < 0 < 0(0, 0) $< \delta < 0 < 0 < 0$

Width and height: at least ω

Counting elements: at least ω

Let's extend height and width to infinite wqos with ordinals

 \circ < \wedge \mathbb{N} \times \mathbb{N} < \circ \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee V $0 \leftarrow 0 \leftarrow 0$ \vee \vee \vee \vee \vee \vee \vee V V $(0, 1) \leftarrow \bigcirc \leftarrow \bigcirc$ \vee \vee \vee \vee \vee V $(0,0) \leftarrow 0 \leftarrow 0 \leftarrow 0 \leftarrow 0$

Width and height: at least ω

Counting elements: at least ω^2

ω

ω

 (ω)

Definition (Maximal order type, Width and Height)

$$o(X)$$

w(X) = ordinal rank of the tree of
$$\begin{cases} bad sequences \\ antichain sequences \\ decreasing sequences \end{cases}$$
 in X.

Definition from Kříž & Thomas(1990) (first definition of ordinal width)

First definition of maximal order type by De Jongh & Parikh(1977)

Ex: Tree of decreasing sequences

Definition: Rank of well-founded trees

♣ Ex: Tree of decreasing sequences

Definition: Rank of well-founded trees

Ex: Tree of decreasing sequences

Definition: Rank of well-founded trees

Ex: Tree of decreasing sequences

Definition: Rank of well-founded trees

Ex: Tree of decreasing sequences

Definition: Rank of well-founded trees

Measuring with games

• Game: α vs w(X)

- Initial configuration:
 - Odile : $\gamma = \alpha$,
 - Antoine : $S = \emptyset$
- Player alternate:
 - Odile picks $\gamma' < \gamma$
 - Antoine extends *S* into
 - S :: x an antichain,
- End: You lose if you cannot play anymore

Measuring with games

• Game: α vs w(X)

- Initial configuration:
 - Odile : $\gamma = \alpha$,
 - Antoine : $S = \emptyset$
- Player alternate:
 - $\bullet \ \ {\rm Odile \ picks} \ \gamma' < \gamma$
 - Antoine extends *S* into
 - S :: x an antichain,
- End: You lose if you cannot play anymore

Theorem (Blass & Gurevich (2008))

- Antoine has winning strategy when Odile begins $\Leftrightarrow \alpha \leq w(X)$
- Odile has winning strategy when Antoine begins $\Leftrightarrow \alpha \ge w(X)$

Example: Playing on the on disjoint sum

Disjoint sum $A \sqcup B$

Theorem: $o(A \sqcup B) = o(A) \oplus o(B)$ (De Jongh & Parikh(1977))

Example: Playing on the on disjoint sum

Theorem: $o(A \sqcup B) = o(A) \oplus o(B)$ (De Jongh & Parikh(1977))

Ex: $(\omega^{\omega} + \omega^3) \oplus (\omega^5 + \omega + 1) = \omega^{\omega} + \omega^5 + \omega^3 + \omega + 1$

Example: Playing on the on disjoint sum

Disjoint sum $A \sqcup B$

Theorem: $o(A \sqcup B) = o(A) \oplus o(B)$ (De Jongh & Parikh(1977))

This theorem is easy to prove with games!

Disjoint sum $A \sqcup B$

Direct sum A + B

Direct sum A + B

А

А

	Space	M.O.T.	Height	Width
Disjoint sum	$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
Direct sum	A + B	o(A) + o(B)	h(A) + h(B)	$\max(\mathbf{w}(A), \mathbf{w}(B))$
Cartesian prod.	$A \times B$	$o(A)\otimeso(B)$	$h(A) \oplus h(B)$?
Direct prod.	$A \cdot B$?	$h(A) \cdot h(B)$	$w(A) \odot w(B)$

	Space	M.O.T.	Height	Width
Disjoint sum	$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
Direct sum	A + B	o(A) + o(B)	h(A) + h(B)	$\max(\mathbf{w}(A), \mathbf{w}(B))$
Cartesian prod.	$A \times B$	$o(A)\otimeso(B)$	$h(A) \oplus h(B)$?
Direct prod.	$A \cdot B$?	$h(A) \cdot h(B)$	$w(A) \odot w(B)$
Fin. words	<i>A</i> *	$\omega^{\omega^{(o(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(\circ(A)^{\pm})}}$
	$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$?
Fin. multisets	$M^{o}(A)$	$\omega^{\circ(A)}$?	?
Fin. Powerset	$P_{f}(A)$?	?	?

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	$\geq w(o(A) \times o(B))$
$A \cdot B$	$o(A) \cdot pred_k(o(B)) + o(A) \otimes k$	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
A*	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$	$\omega^{\widehat{\mathbf{o}(A)}-1}$
$M^{o}(A)$	$\omega^{o(A)}$	$\omega^{h(A)}$	$\omega^{o_{\perp}}(A)$
$P_{f}(A)$	$\leq 2^{o(A)}$	$\leq 2^{h(A)}$	$\geq 2^{w(A)}$

Back in time

Space	M.O.T.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(\mathbf{w}(A),\mathbf{w}(B))$
$A \times B$	$o(A)\otimeso(B)$	$h(A) \oplus h(B)$?
$A \cdot B$?	$h(A) \cdot h(B)$	$w(A) \odot w(B)$
A*	$\omega^{\omega^{(o(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\widehat{\omega^{\circ(A)}}$	$h^*(A)$?
$M^{o}(A)$	$\omega^{\circ(A)}$?	?
$P_{f}(A)$?	?	?

Quick look at the direct product

Lexicographic product $A \cdot B$

• I was told that $o(A \cdot B) = o(A) \cdot o(B)$

... but only the lower bound is true: $o(A \cdot B) \ge o(A) \cdot o(B)$

Mistake noticed by Harry Altman (March, 2024)

Quick look at the direct product

 $(\omega + 1) \cdot
abla$ $(\omega + 1) \cdot \Delta$

Quick look at the direct product

$$o((\omega + 1) \cdot \nabla) = o((\omega + 1) \cdot \Delta) =$$

$$[(\omega + 1) \oplus (\omega + 1)] \qquad (\omega + 1) +$$

$$+ \qquad +$$

$$(\omega + 1) \qquad [(\omega + 1) \oplus (\omega + 1)]$$

$$= \omega \cdot 3 + 2 \qquad = \omega \cdot 3 + 1$$

$$= o(\omega + 1) \cdot o(\nabla)$$

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$?
$A \cdot B$	Not functional	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
A*	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$?
$M^{o}(A)$	$\omega^{o(A)}$?	?
$P_{f}(A)$?	?	?

Space	M.O.T.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	Not functional
$A \cdot B$	Not functional	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
A*	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$?
$M^{o}(A)$	$\omega^{o(A)}$?	?
$P_{f}(A)$?	?	?

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	Not functional
$A \cdot B$	Not functional	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
A*	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$	$\omega^{\widehat{o(A)}-1}$
$M^{o}(A)$	$\omega^{o(A)}$?	?
$P_{f}(A)$?	?	?

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	Not functional
$A \cdot B$	Not functional	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
A*	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$	$\omega^{\widehat{o(A)}-1}$
$M^{o}(A)$	$\omega^{o(A)}$	$\omega^{h(A)}$?
$P_{f}(A)$?	?	?

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	Not functional
$A \cdot B$	Not functional	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
A*	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$	$\omega^{\widehat{o(A)}-1}$
$M^{o}(A)$	$\omega^{o(A)}$	$\omega^{h(A)}$	Not functional
$P_{f}(A)$?	?	?
Space	М.О.Т.	Height	Width
-----------------	---	----------------------------	--------------------------------------
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	Not functional
$A \cdot B$	Not functional	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
A*	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{o(A)}}$	$h^*(A)$	$\omega^{\widehat{\mathbf{o}(A)}-1}$
$M^{o}(A)$	$\omega^{o(A)}$	$\omega^{h(A)}$	Not functional
$P_{f}(A)$	Not functional	Not functional	Not functional

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)

Non functional example for P_f

 $Y_1 = (\omega + \omega) \sqcup (\omega + \omega) \qquad \qquad Y_2 = (\omega \sqcup \omega) + (\omega \sqcup \omega)$

 $f(\mathsf{P}_{\mathsf{f}}(\mathsf{Y}_1)) \neq f(\mathsf{P}_{\mathsf{f}}(\mathsf{Y}_2))$ for $f = \mathsf{o}, \mathsf{h}, \mathsf{w}$

Non functionality

What can we do?

- Three main approaches
 - Finding functional (tight) bounds

Three main approaches

• Finding functional (tight) bounds

Bounds on the finite powerset

From a joint article with Abriola, Halfon, Lopez, Schmitz, Schnoebelen

$$\begin{split} 1 + \mathrm{o}(A) &\leq \mathrm{o}(\mathsf{P}_\mathsf{f}(A)) \leq 2^{\mathrm{o}(A)} \\ 1 + \mathsf{h}(A) &\leq \mathsf{h}(\mathsf{P}_\mathsf{f}(A)) \leq 2^{\mathsf{h}(A)} \\ 2^{\mathsf{w}(A)} &\leq \mathsf{w}(\mathsf{P}_\mathsf{f}(A)) \end{split}$$

Three main approaches

• Finding functional (tight) bounds

Bounds on the finite powerset

From a joint article with Abriola, Halfon, Lopez, Schmitz, Schnoebelen

$$\begin{split} 1 + \mathrm{o}(A) &\leq \mathrm{o}(\mathsf{P}_{\mathsf{f}}(A)) \leq 2^{\mathrm{o}(A)} \\ 1 + \mathsf{h}(A) &\leq \mathsf{h}(\mathsf{P}_{\mathsf{f}}(A)) \leq 2^{\mathsf{h}(A)} \\ 2^{\mathsf{w}(A)} &\leq \mathsf{w}(\mathsf{P}_{\mathsf{f}}(A)) \end{split}$$

Hence $2^{\mathsf{w}(A)} \le \mathsf{w}(\mathsf{P}_{\mathsf{f}}(A)) \le o(\mathsf{P}_{\mathsf{f}}(A)) \le 2^{o(A)}$

Three main approaches

• Finding functional (tight) bounds

Bounds on the finite powerset

From a joint article with Abriola, Halfon, Lopez, Schmitz, Schnoebelen

$$\begin{split} 1 + \mathrm{o}(A) &\leq \mathrm{o}(\mathsf{P}_\mathsf{f}(A)) \leq 2^{\mathrm{o}(A)} \\ 1 + \mathsf{h}(A) &\leq \mathsf{h}(\mathsf{P}_\mathsf{f}(A)) \leq 2^{\mathsf{h}(A)} \\ 2^{\mathsf{w}(A)} &\leq \mathsf{w}(\mathsf{P}_\mathsf{f}(A)) \end{split}$$

Hence $2^{w(A)} = w(P_f(A)) = o(P_f(A)) = 2^{o(A)}$ when w(A) = o(A)

Three main approaches

- Finding functional (tight) bounds
- Delimiting a wide family of well-behaved wqos
 Ex: Wqos that verify w = o, Cartesian product of ordinals

Three main approaches

- Finding functional (tight) bounds
- Delimiting a wide family of well-behaved wqos $\label{eq:Ex:Wqos} Ex: \mbox{ Wqos that verify } w = o, \mbox{ Cartesian product of ordinals}$
- the third one will amaze you!

Bounding ordinal invariants

Upper bounds

Residuals of a wqo

$$A_{
$$A_{\perp x} = \{ y \in A \mid y \perp x \}$$
$$A_{>x} = \{ y \in A \mid y \not\geq x \}$$
$$A_{\not\geq x} = \{ y \in A \mid y \not\geq x \}$$
$$= A_{$$$$

• Ex: Residuals of $\mathbb{N} \times \mathbb{N}$. a.k.a. $\omega \times \omega$

Residual equations

$$o(A) = \sup_{x \in A} o(A_{\geq x}) + 1$$
$$h(A) = \sup_{x \in A} h(A_{$$

$$\mathsf{w}(A) = \sup_{x \in A} \mathsf{w}(A_{\perp x}) + 1$$

• Ex: Residuals of $\mathbb{N} \times \mathbb{N}$. a.k.a. $\omega \times \omega$

Link with tree rank definition

Link with tree rank definition

Link with tree rank definition

Residual equations

$$o(A) = \sup_{x \in A} o(A_{\geq x}) + 1$$
$$h(A) = \sup_{x \in A} h(A_{
$$w(A) = \sup_{x \in A} w(A_{\perp x}) + 1$$$$

Properties

- $o(A_{\not\geq x}) < o(A)$,
- h(A_{<x}) < h(A), o(A_{<x}) < o(A)
- $w(A_{\perp x}) < w(A)$, $o(A_{\perp x}) < o(A)$
- However, $(\mathbb{N}\times\mathbb{N})_{>x}$ contains a copy of $\mathbb{N}\times\mathbb{N}$

• How to compute $w(\alpha \times \beta)$ (From Abraham (1987))

• How to compute $w(\alpha \times \beta)$ (From Abraham (1987))

 $\alpha \times \beta$

• How to compute $w(\alpha \times \beta)$ (From Abraham (1987))

• How to compute $w(\alpha \times \beta)$ (From Abraham (1987))

 $\mathsf{w}(\alpha \times \beta) = \mathsf{sup}_{\mathsf{x}_1,\mathsf{x}_2}(\mathsf{w}((\alpha - \mathsf{x}_1) \times \mathsf{x}_2) \oplus \mathsf{w}(\mathsf{x}_1 \times (\beta - \mathsf{x}_2)) + 1)$

$$\begin{split} \mathsf{w}(\alpha_1 \times \alpha_2 \times \alpha_3) &\leq \mathsf{sup}_{x_1, x_2, x_3}(\mathsf{w}((\alpha_1 - x_1) \times (\alpha_2 - x_2) \times x_3) \\ &\oplus(\mathsf{w}((\alpha_1 - x_1) \times x_2 \times x_3) \oplus \dots + 1) \end{split}$$

$$\begin{split} \mathsf{w}(\alpha_1 \times \alpha_2 \times \alpha_3) &\leq \mathsf{sup}_{\mathsf{x}_1,\mathsf{x}_2,\mathsf{x}_3}(\mathsf{w}((\alpha_1 - \mathsf{x}_1) \times (\alpha_2 - \mathsf{x}_2) \times \mathsf{x}_3) \\ &\oplus(\mathsf{w}((\alpha_1 - \mathsf{x}_1) \times \mathsf{x}_2 \times \mathsf{x}_3) \oplus \dots + 1) \end{split}$$

The method of residuals provides an upper bound...

How can we prove a lower bound ?

Bounding ordinal invariants

Lower bounds

• Game: α vs w(X)

- Initial configuration:
 - Odile : $\gamma = \alpha$,
 - Antoine : $S = \emptyset$
- Each turn:
 - Odile : $\gamma \leftarrow \gamma' < \gamma$
 - Antoine : $S \leftarrow S :: x$,

Requires: S antichain

• End: First one who can't play loses!

★ Lower bound: we want a winning strategy for Antoine

Reasoning with games: Slices

• Imagine this is a wqo...

Slice X into disjoint subsets whose width is known (Antoine has a winning strategy)

Slice X into disjoint subsets whose width is known (Antoine has a winning strategy)

Can Antoine combine his strategies on the slices into a winning strategy on X against $\Sigma w(slices)$

Slice X into disjoint subsets whose width is known (Antoine has a winning strategy)

Can Antoine combine his strategies on the slices into a winning strategy on X against $\Sigma w(slices)$

Assume he finished playing on the first slices What is left of the next slice?

Slice X into disjoint subsets whose width is known (Antoine has a winning strategy)

Can Antoine combine his strategies on the slices into a winning strategy on X against $\Sigma w(slices)$

Assume he finished playing on the first slices What is left of the next slice?

We need w(residual) = w(slice)

Slice X into disjoint subsets whose width is known (Antoine has a winning strategy)

Can Antoine combine his strategies on the slices into a winning strategy on X against $\Sigma w(slices)$

Assume he finished playing on the first slices What is left of the next slice?

We need w(residual) = w(slice)

 \rightarrow Quasi-incomparable subsets

Example: $w(A \times (B + \cdots + B))$

If A self-residual

Then $w(A \times (B + \dots + B)) = w(A \times B) + \dots + w(A \times B)$
Study family of examples

Cartesian product of ordinals

A family to study width of CP

\bigstar Computing w($\alpha_1 \times \cdots \times \alpha_n$)

- is functional
- $w(\alpha \times \beta)$ is known (Abraham (1987))
- Easy to slice into quasi-incomparable subsets $\omega^{\alpha_1} \times \cdots \times \omega^{\alpha_n}$
- New insight for CP of non-linear wqos

Width of CP of n ordinals

$$\mathsf{w}(\alpha_1 \times \cdots \times \alpha_n) = \bigoplus_{\substack{s \in I_1 \times \cdots \times I_{k-1}, \\ \min s = 0}} \omega^{\eta(\alpha_{1,s(1)}, \dots, \alpha_{k-1,s(k-1)})} \otimes \left(\prod_{k \leq i \leq n} \alpha_i\right)$$

• When does one have w = o?

 $w(\alpha_1 \times \cdots \times \alpha_n) = o(\alpha_1 \times \cdots \times \alpha_n)$ iff

•
$$\exists i \text{ s.t. } \alpha_i = \omega^{\beta}$$

• $\exists j \neq k \text{ s.t. } \alpha_j \text{ and } \alpha_k \text{ are divisible by } \omega^{\omega}$

New insight for the CP of non-linear wqos

Let $o(A_i) = \alpha_i$. Then $w(\alpha_1 \times \cdots \times \alpha_n) \le w(A_1 \times \cdots \times A_n) \le o(A_1 \times \cdots \times A_n) = o(\alpha_1 \times \cdots \times \alpha_n)$

Translating conditions

$$w(A_1 \times \cdots \times A_n) = o(A_1 \times \cdots \times A_n)$$
 if

•
$$\exists i \text{ s.t. } o(A_i) = \omega^{\beta}$$

•
$$\exists j \neq k \text{ s.t. } o(A_j) \text{ and } o(A_k) \text{ are divisible by } \omega^{\omega}$$

Third approach

Not functional in o, w, h? Never mind! Let's find some new invariants

Definition (Friendly order type)

 $o_{\perp}(X) =$ rank of the tree of *open-ended* bad sequences

Definition (Friendly order type)

$o_{\perp}(X) =$ rank of the tree of *open-ended* bad sequences

Theorem (Width of M°)

 $\mathsf{w}(\mathsf{M}^{\mathsf{o}}(X)) = \omega^{\mathsf{o}_{\perp}(X)}$

	Space	o,h,w	o_{\perp}
Theorem (Width of M°)			?
$w(M^{o}(X)) = \omega^{o_{\perp}(X)}$?
			?

How to compute the fot?

- Exists $X' \subseteq X$ such that $\operatorname{Bad}(X') \subseteq \operatorname{Bad}_{\perp}(X)$
- $limit_part(o(str(X))) \le o_{\perp}(X) \le o(str(X))$ with $str(X) = \{ x \in X \mid \exists y \in X, y \perp x \}$
- w(X) $-1 \leq o_{\perp}(X)$
- if w(A) = o(A) limit, then $o_{\perp}(X) = o(X)$
- $o_{\perp}(A \sqcup B) = o(A) \oplus o(B)$

... and a finite invariant, the number of maximal elements

$$\begin{array}{ll} \nabla \cdot (\omega + 1) & \Delta \cdot (\omega + 1) \\ \mathsf{o} = \omega \cdot 3 + 2 & \mathsf{o} = \omega \cdot 3 + 1 \\ max_elt = 2 & max_elt = 1 \end{array}$$

Theorem (M.o.t. of the direct product)

$$o(A) \cdot pred^{k}(o(B)) + o(A) \otimes k$$
 if $max_elt(B) = k$

Conclusion

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
$A \times B$	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	$\geq w(o(A) \times o(B))$
A · B	$o(A) \cdot \textit{pred}^k(o(B)) + o(A) \otimes k$	h(A) · h(B)	$w(A) \odot w(B)$
	if $max_elt(B) = k$		
<i>A</i> *	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{o(A)}}$	$h^*(A)$	$\omega^{\widehat{\mathbf{o}(A)}-1}$
$M^{o}(A)$	$\omega^{o(A)}$	$\omega^{h(A)}$	$\omega^{o_{\perp}(A)}$
$P_{f}(A)$	$\leq 2^{o(A)}$	$\leq 2^{h(A)}$	$\geq 2^{w(A)}$

Conclusion

Measuring well quasi-orders

- is fun!
- Often not functional but... everyday-life wqos are well-behaved!
- Elementary family of wqos

 $E := \alpha \ge \omega^{\omega}$ mult. indec. $|E_1 \sqcup E_2 | E_1 \times E_2 | M^{\diamond}(E) | M^{\circ}(E) | E^* | P_f(E)$

• Application in well-structured transition systems

Conclusion

Measuring well quasi-orders

- is fun!
- Often not functional but... everyday-life wqos are well-behaved!
- Elementary family of wqos

 $E := \alpha \ge \omega^{\omega}$ mult. indec. $|E_1 \sqcup E_2 | E_1 \times E_2 | M^{\diamond}(E) | M^{\circ}(E) | E^* | P_f(E)$

• Application in well-structured transition systems

Open questions

- New invariants:
 - Computing the fot
 - Is there an invariant that would make CP and P_f functional?
- New operations: Infinite words, variants of trees, graph minor, ...

Bibliography i

Parosh Aziz Abdulla and Bengt Jonsson. Undecidable verification problems for programs with unreliable channels. Inf. Comput., 130(1):71–90, 1996.

doi:10.1006/TNCD.1996.0083.

U. Abraham.

A note on Dilworth's theorem in the infinite case.

Order. 1987.

- U. Abraham and R. Bonnet.

Hausdorff's theorem for posets that satisfy the finite antichain property.

Fund. Math., 1999.

Bibliography ii

A. Blass and Y. Gurevich.

Program termination and well partial orderings.

ACM Trans. Computational Logic, 2008.

D. H. J. de Jongh and R. Parikh.

Well-partial orderings and hierarchies.

Indag. Math., 1977.

M. Džamonja, S. Schmitz, and Ph. Schnoebelen.
On ordinal invariants in well quasi orders and finite antichain orders.

In Well Quasi-Orders in Computation, Logic, Language and Reasoning, volume 53 of Trends in Logic. 2020.

Alain Finkel.

Decidability of the termination problem for completely specified protocols.

Distributed Comput., 1994.

🔋 I. Kříž and R. Thomas.

On well-quasi-ordering finite structures with labels.

Graphs and Combinatorics, 1990.

I. Kříž and R. Thomas.

Ordinal types in Ramsey theory and well-partial-ordering theory. In *Mathematics of Ramsey Theory*, Algorithms and Combinatorics. 1990.

D. Schmidt.

Well-Partial Orderings and Their Maximal Order Types. Habilitationsschrift, Heidelberg, 1979. Reprinted as [?].

S. Schmitz and Ph. Schnoebelen.
Multiply-recursive upper bounds with Higman's lemma.
In ICALP, 2011.

J. Van der Meeren, M. Rathjen, and A. Weiermann.
Well-partial-orderings and the big Veblen number.
Archive for Mathematical Logic, 2015.

A. Weiermann.

A computation of the maximal order type of the term ordering on finite multisets.

In *Proc. 5th Conf. Computability in Europe (CiE 2009), Heidelberg, Germany, July 2009*, Lecture Notes in Computer Science, 2009.

On wqos

- I. Vialard, On the Width of the Cartesian Product of Ordinals, Order (2024).
- I. Vialard, Ordinal Measures of the Set of Finite Multisets, MFCS 2023.
- S. Abriola, S. Halfon, A. Lopez, S. Schmitz, Ph. Schnoebelen, I. Vialard, Measuring well quasi-ordered finitary powersets, soon to be submitted to MSCS.

On piecewise complexity and minimality index

• M. Praveen, Ph. Schnoebelen, I. Vialard, J. Veron, On the piecewise complexity of words and periodic words, SOFSEM 2024