
Measuring well quasi-orders and complexity of

verification

PhD defense of Isa Vialard

PhD advisor: Philippe Schnoebelen, Directeur de recherche, CNRS, LMF

July 3, 2024

1/47

Definitions: Quasi-order

(0, 0)

(0, 1)

Quasi-order:

reflexive,transitive,

can be partial

N× NN× N

2/47

Definitions: Quasi-order

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
(0, 0)

(0, 1)

Quasi-order:

reflexive,transitive,

can be partial

Ex: (2, 3) ≤× (5, 4)

but (1, 2) ⊥ (2, 1)

(N× N,≤×)(N× N,≤×)

2/47

Some interesting sequences

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

(0, 0)

(0, 1)

(N× N,≤×)(N× N,≤×) — decreasing sequence

(5, 5) > (4, 4) > (4, 3)
> (2, 3) > (1, 1)

Some interesting sequences

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

(0, 0)

(0, 1)

(N× N,≤×)(N× N,≤×) — decreasing sequence

— incomparable sequence
(or antichain)
i.e. pairwise incomparable

(1, 9) ⊥ (3, 8), (4, 7), (7, 5), . . .

Some interesting sequences

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

(0, 0)

(0, 1)

(N× N,≤×)(N× N,≤×) — decreasing sequence

— incomparable sequence
(or antichain)
i.e. pairwise incomparable

— bad sequence
i.e. pairwise non increasing

(1, 9) �≤ (3, 8), (4, 7), (7, 5), . . .

3/47

Definitions: Well Quasi-Order

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

(0, 0)

(0, 1)

(N× N,≤×)(N× N,≤×) — decreasing sequence

— antichain
i.e. pairwise incomparable

— bad sequence
i.e. pairwise non increasing

No infinite antichain
or decreasing seq

⇔

WQO

Definitions: Well Quasi-Order

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

(0, 0)

(0, 1)

(N× N,≤×)(N× N,≤×) — decreasing sequence

— antichain
i.e. pairwise incomparable

— bad sequence
i.e. pairwise non increasing

No infinite antichain
or decreasing seq

⇔

WQO

⇔

No infinite bad seq

4/47

Definitions: Well Quasi-Order

Some see wqos as wells

Blass & Gurevich (2008) No infinite antichain
or decreasing seq

⇔

WQO

⇔
No infinite bad seq

Definitions: Well Quasi-Order

Some see wqos as wells

Blass & Gurevich (2008)

Others see chairlift queue

My parents (2023)

No infinite antichain
or decreasing seq

⇔

WQO

⇔
No infinite bad seq

5/47

Definitions: Well Quasi-Order

Some see wqos as wells

Blass & Gurevich (2008)

Others see chairlift queue

My parents (2023)

No infinite antichain
or decreasing seq

⇔

WQO

⇔
No infinite bad seq

5/47

Motivations

♦ Reasons to study wqos

� “It is fun” (Kř́ıž & Thomas (1990))

6/47

Motivations

♦ Reasons to study wqos

� “It is fun” (Kř́ıž & Thomas (1990))

� Applications in proof theory, term rewriting, graph theory, . . . and

program verification!

6/47

Motivations

♦ Reasons to study wqos

� “It is fun” (Kř́ıž & Thomas (1990))

� Applications in proof theory, term rewriting, graph theory, . . . and

program verification!

♣ Well-structured transition systems

Finkel (1994), Abdulla& Jonsson (1996)

� Set of configurations: WQO

� ≤ a simulation relation

s1 s2

t1

≤

t2

≤

6/47

Motivations

♦ Reasons to study wqos

� “It is fun” (Kř́ıž & Thomas (1990))

� Applications in proof theory, term rewriting, graph theory, . . . and

program verification!

♣ Well-structured transition systems

Finkel (1994), Abdulla& Jonsson (1996)

� Set of configurations: WQO

� ≤ a simulation relation

s1 s2

t1

≤

t2

≤

� Ex: Counter machines, Petri

nets, VASS, Lossy channel

systems . . .

Vector Addition Systems with

States

6/47

Motivations

♣ Well-structured transition systems

Finkel (1994), Abdulla& Jonsson (1996)

� Set of configurations: WQO

� ≤ is upward-compatible

s1 s2

t1

≤
t2

≤
� Ex: Counter machines, Petri

nets, VASS, Lossy channel

systems . . .

Vector Addition Systems with

States

♦ Complexity and expressiveness

Schmitz& Schnoebelen(2011)

� Controlled bad sequences (even decreasing, or antichains)

� Can we bound the length of controlled sequences by measuring wqo?
7/47

Measuring wqos

♣ Natural notions of measure when finite

Finite subsets of {1, 2, 3, 4} ordered by ⊆.

8/47

Measuring wqos

♦ Let’s extend height and width to infinite wqos

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

(0, 0)

(0, 1)

N× NN× N

Problem:

No largest decreasing sequence

No largest antichain

9/47

Crash course on ordinal numbers

♦ Enumerate well-orders (i.e. linear wqos)

Cantor(1883)

0 < 1 < . . . < n < . . .

Crash course on ordinal numbers

♦ Enumerate well-orders (i.e. linear wqos)

Cantor(1883)

0 < 1 < . . . < n < . . .

<

ω

Crash course on ordinal numbers

♦ Enumerate well-orders (i.e. linear wqos)

Cantor(1883)

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

Two operations to build well-orders:

Successor: Add an element on top

Limit: Infinite union of increasing well-orders is well-ordered

10/47

Crash course on ordinal numbers

♦ Enumerate well-orders (i.e. linear wqos)

Cantor(1883)

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

..
.

ω · n < . . .

Two operations to build well-orders:

Successor: Add an element on top

Limit: Infinite union of increasing well-orders is well-ordered

10/47

Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

..
.

ω · n < . . .

Ordinal as transitive sets:
α = { β < α }

Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

..
.

ω · n < . . .

Ordinal as transitive sets:
α = { β < α }
Ex: ω = N, ω + 1 = N ∪ {ω}

ω

ω + 1

ω2

<
ω2

11/47

Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Union of increasing sequence of well-orders is well-ordered

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

.
.
.

ω · n < . . .

<

ω2 . . .

..
.

Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Union of increasing sequence of well-orders is well-ordered

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

.
.
.

ω · n < . . .

<

ω2 . . .

..
. <

ω3
. .
.
ωn

. .
.

12/47

Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Infinite union of increasing well-orders is well-ordered

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

.
.
.

ω · n < . . .

<

ω2 . . .

..
. <

ω3
. .
.
ωn

. .
.

< ωω

Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Infinite union of increasing well-orders is well-ordered

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

.
.
.

ω · n < . . .

<

ω2 . . .

..
. <

ω3
. .
.
ωn

. .
.

< ωω < ωω
ω
< . . . < ωω

..
.ω

< . . .

Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Infinite union of increasing well-orders is well-ordered

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

.
.
.

ω · n < . . .

<

ω2 . . .

..
. <

ω3
. .
.
ωn

. .
.

< ωω < ωω
ω
< . . . < ωω

..
.ω

< . . .

E0

<
..
.

13/47

Measuring wqos

♣ Let’s extend height and width to infinite wqos with ordinals

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

(0, 0)

(0, 1)

Width and height:

at least ω

N× NN× N

14/47

Measuring wqos

♣ Let’s extend height and width to infinite wqos with ordinals

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

(0, 0)

(0, 1)

Width and height:

at least ω

Counting elements:

at least ω

N× NN× N

14/47

Measuring wqos

♣ Let’s extend height and width to infinite wqos with ordinals

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

(0, 0)

(0, 1)

Width and height:

at least ω

Counting elements:

at least ω2

ω

ω

ω

..
.

N× NN× N

14/47

Ordinal invariants

Definition (Maximal order type, Width and Height)

�����

o(X)

w(X)

h(X)

= ordinal rank of the tree of





bad sequences

antichain sequences

decreasing sequences

in X .

Definition from Kř́ıž & Thomas(1990) (first definition of ordinal width)

First definition of maximal order type by De Jongh & Parikh(1977)

15/47

Definition: Rank of well-founded trees

♣ Ex: Tree of decreasing sequences

∅

x1 x2 xk.

x1 > x2 x1 >

x1 > · · · > xk

root: empty sequence

leaf: maximal decreasing sequence

Definition: Rank of well-founded trees

♣ Ex: Tree of decreasing sequences

∅

x1 x2 xk.

x1 > x2 x1 >

x1 > · · · > xk

rk = 0

Definition: Rank of well-founded trees

♣ Ex: Tree of decreasing sequences

∅

x1 x2 xk.

x1 > x2 x1 >

x1 > · · · > xk

rk = 0

γ0 γα

Definition: Rank of well-founded trees

♣ Ex: Tree of decreasing sequences

∅

x1 x2 xk.

x1 > x2 x1 >

x1 > · · · > xk

rk = 0

γ0 γα

rk(x1) = sup(γα + 1)

Definition: Rank of well-founded trees

♣ Ex: Tree of decreasing sequences

∅

x1 x2 xk.

x1 > x2 x1 >

x1 > · · · > xk

rk = 0

γ0 γα

rk(x1) = sup(γα + 1)

h(X) = sup(rk(x) + 1)

16/47

Definition: Rank of well-founded trees

♣ Ex: Height of N

∅

2 3 n.

2 > 1 2 > 0

2 > 1 > 0

10

1 > 0

Definition: Rank of well-founded trees

♣ Ex: Height of N

∅

2 3 n.

2 > 1 2 > 0

2 > 1 > 0

10

1 > 0

0

0

0 0

Definition: Rank of well-founded trees

♣ Ex: Height of N

∅

2 3 n.

2 > 1 2 > 0

2 > 1 > 0

10

1 > 0

0

0

0 0

1

1

2 3 n

Definition: Rank of well-founded trees

♣ Ex: Height of N

∅

2 3 n.

2 > 1 2 > 0

2 > 1 > 0

10

1 > 0

0

0

0 0

1

1

2 3 n

h(N) = sup(n + 1) = ω

17/47

Measuring with games

♦ Game: α vs w(X)
� Initial configuration:

� Odile : γ = α,

� Antoine : S = ∅
� Player alternate:

� Odile picks γ� < γ

� Antoine extends S into

S :: x an antichain,

� End: You lose if you

cannot play anymore

18/47

Measuring with games

♦ Game: α vs w(X)
� Initial configuration:

� Odile : γ = α,

� Antoine : S = ∅
� Player alternate:

� Odile picks γ� < γ

� Antoine extends S into

S :: x an antichain,

� End: You lose if you

cannot play anymore

Theorem (Blass & Gurevich (2008))

� Antoine has winning strategy when Odile begins ⇔ α ≤ w(X)

� Odile has winning strategy when Antoine begins ⇔ α ≥ w(X)

18/47

Example: Playing on the on disjoint sum

�

A B

≤
≥

Disjoint sum A � B

Theorem: o(A � B) = o(A)⊕ o(B) (De Jongh & Parikh(1977))

19/47

Example: Playing on the on disjoint sum

�

A B

≤
≥

Disjoint sum A � B

Theorem: o(A � B) = o(A)⊕ o(B) (De Jongh & Parikh(1977))

Ex: (ωω + ω3)⊕ (ω5 + ω + 1) = ωω + ω5 + ω3 + ω + 1

19/47

Example: Playing on the on disjoint sum

�

A B

≤
≥

Disjoint sum A � B

Theorem: o(A � B) = o(A)⊕ o(B) (De Jongh & Parikh(1977))

This theorem is easy to prove with games!

19/47

Example: Playing on the disjoint sum

Odile Antoine

o(A) ⊕ o(B)

A B

�

o(A � B) ≤ o(A)⊕ o(B) if Odile wins when Antoine begins

o(A � B) ≥ o(A)⊕ o(B) if Antoine wins when Odile begins

Example: Playing on the disjoint sum

Odile Antoine

o(A) ⊕ o(B)

A B

�

o(A � B) ≤ o(A)⊕ o(B) if Odile wins when Antoine begins

o(A � B) ≥ o(A)⊕ o(B) if Antoine wins when Odile begins

Example: Playing on the disjoint sum

Odile Antoine

o(A) ⊕ o(B)

A B

�
α1 ⊕ o(B)

o(A � B) ≤ o(A)⊕ o(B) if Odile wins when Antoine begins

o(A � B) ≥ o(A)⊕ o(B) if Antoine wins when Odile begins

Example: Playing on the disjoint sum

Odile Antoine

o(A) ⊕ o(B)

A B

�
α1 ⊕ o(B)

o(A � B) ≤ o(A)⊕ o(B) if Odile wins when Antoine begins

o(A � B) ≥ o(A)⊕ o(B) if Antoine wins when Odile begins

Example: Playing on the disjoint sum

Odile Antoine

o(A) ⊕ o(B)

A B

�
α1 ⊕ o(B)

α1 ⊕ β1

o(A � B) ≤ o(A)⊕ o(B) if Odile wins when Antoine begins

o(A � B) ≥ o(A)⊕ o(B) if Antoine wins when Odile begins

Example: Playing on the disjoint sum

Odile Antoine

o(A) ⊕ o(B)

A B

�
α1 ⊕ o(B)

α1 ⊕ β1

o(A � B) ≤ o(A)⊕ o(B) if Odile wins when Antoine begins

o(A � B) ≥ o(A)⊕ o(B) if Antoine wins when Odile begins

Example: Playing on the disjoint sum

Odile Antoine

o(A) ⊕ o(B)

A B

�
α1 ⊕ o(B)

α1 ⊕ β1

α1 ⊕ β2

o(A � B) ≤ o(A)⊕ o(B) if Odile wins when Antoine begins

o(A � B) ≥ o(A)⊕ o(B) if Antoine wins when Odile begins

20/47

Other classical operations on WQOs

�

A B

≤

≥

Disjoint sum A � B

21/47

Other classical operations on WQOs

�

A B

≤

≥

Disjoint sum A � B

+

A

B

≤

Direct sum A+ B

21/47

Other classical operations on WQOs

�

A B

≤

≥

Disjoint sum A � B

+

A

B

≤

Direct sum A+ B

×

A B

≤

≥
Cartesian product A× B

21/47

Other classical operations on WQOs

�

A B

≤

≥

Disjoint sum A � B

+

A

B

≤

Direct sum A+ B

×

A B

≤

≥
Cartesian product A× B

≤

≥
≥

B
A

A

Lexicographic product A · B

21/47

. . . And their ordinal invariants

Space M.O.T. Height Width

Disjoint sum A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

Direct sum A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

Cartesian prod. A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ?

Direct prod. A · B ? h(A) · h(B) w(A)� w(B)

22/47

. . . And their ordinal invariants

Space M.O.T. Height Width

Disjoint sum A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

Direct sum A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

Cartesian prod. A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ?

Direct prod. A · B ? h(A) · h(B) w(A)� w(B)

Fin. words A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

Fin. multisets
M�(A) ω

�o(A) h∗(A) ?

Mo(A) ωo(A) ? ?

Fin. Powerset Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020) 22/47

My contributions

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ≥ w(o(A)× o(B))

A · B o(A) · predk (o(B)) + o(A)⊗ k h(A) · h(B) w(A)� w(B)

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ω

�o(A)−1

Mo(A) ωo(A) ωh(A) ωo⊥(A)

Pf(A) ≤ 2o(A) ≤ 2h(A) ≥ 2w(A)

23/47

Back in time

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ?

A · B ? h(A) · h(B) w(A)� w(B)

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ?

Mo(A) ωo(A) ? ?

Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)

24/47

Quick look at the direct product

≤
≥

≥

B
A

A

Lexicographic product A · B

♦ I was told that o(A · B) = o(A) · o(B)

. . . but only the lower bound is true: o(A · B) ≥ o(A) · o(B)
Mistake noticed by Harry Altman (March, 2024)

25/47

Quick look at the direct product

⊥
≤ ≤

⊥

≤ ≤

o = 3

h = 2

w = 2

Δ∇

Quick look at the direct product

(ω + 1) ·∇ (ω + 1) ·Δ

Quick look at the direct product

(ω + 1) ·∇ (ω + 1) ·Δ

Quick look at the direct product

o((ω + 1) ·∇) =

[(ω + 1) ⊕ (ω + 1)]

+

(ω + 1)

= ω · 3 + 2

o((ω + 1) ·Δ) =

[(ω + 1) ⊕ (ω + 1)]

+

(ω + 1)

= ω · 3 + 1

= o(ω + 1) · o(∇)

26/47

What about the other operations?

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ?

A · B Not functional h(A) · h(B) w(A)� w(B)

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ?

Mo(A) ωo(A) ? ?

Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)

27/47

What about the other operations?

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) Not functional

A · B Not functional h(A) · h(B) w(A)� w(B)

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ?

Mo(A) ωo(A) ? ?

Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)

27/47

What about the other operations?

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) Not functional

A · B Not functional h(A) · h(B) w(A)� w(B)

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ω

�o(A)−1

Mo(A) ωo(A) ? ?

Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)

27/47

What about the other operations?

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) Not functional

A · B Not functional h(A) · h(B) w(A)� w(B)

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ω

�o(A)−1

Mo(A) ωo(A) ωh(A) ?

Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)

27/47

What about the other operations?

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) Not functional

A · B Not functional h(A) · h(B) w(A)� w(B)

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ω

�o(A)−1

Mo(A) ωo(A) ωh(A) Not functional

Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)

27/47

What about the other operations?

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) Not functional

A · B Not functional h(A) · h(B) w(A)� w(B)

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ω

�o(A)−1

Mo(A) ωo(A) ωh(A) Not functional

Pf(A) Not functional Not functional Not functional

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)

27/47

Non functional example for Pf

ω

ω

ω

ω

ω

ω

ω

ω

Y1 = (ω + ω) � (ω + ω) Y2 = (ω � ω) + (ω � ω)

+ + +
�

�

�o = ω · 4

h = ω · 2

w = 2

f (Pf(Y1)) �= f (Pf(Y2)) for f = o, h,w

28/47

Non functional example for Cartesian product and multiset ordering

X1 = H + H X2 = H + ω

H

H H

ω

+ +

o = ω · 2
h = ω · 2
w = ω

w(X1 × ω) �= w(X2 × ω) w(Mo(X1)) �= w(Mo(X2)) 29/47

Non functionality

What can we do?

Dealing with non-functionality

♦ Three main approaches

� Finding functional (tight) bounds

30/47

Dealing with non-functionality

♦ Three main approaches

� Finding functional (tight) bounds

♣ Bounds on the finite powerset

From a joint article with Abriola, Halfon, Lopez, Schmitz, Schnoebelen

1 + o(A) ≤ o(Pf(A)) ≤ 2o(A)

1 + h(A) ≤ h(Pf(A)) ≤ 2h(A)

2w(A) ≤ w(Pf(A))

30/47

Dealing with non-functionality

♦ Three main approaches

� Finding functional (tight) bounds

♣ Bounds on the finite powerset

From a joint article with Abriola, Halfon, Lopez, Schmitz, Schnoebelen

1 + o(A) ≤ o(Pf(A)) ≤ 2o(A)

1 + h(A) ≤ h(Pf(A)) ≤ 2h(A)

2w(A) ≤ w(Pf(A))

Hence 2w(A) ≤ w(Pf(A)) ≤ o(Pf(A)) ≤ 2o(A)

30/47

Dealing with non-functionality

♦ Three main approaches

� Finding functional (tight) bounds

♣ Bounds on the finite powerset

From a joint article with Abriola, Halfon, Lopez, Schmitz, Schnoebelen

1 + o(A) ≤ o(Pf(A)) ≤ 2o(A)

1 + h(A) ≤ h(Pf(A)) ≤ 2h(A)

2w(A) ≤ w(Pf(A))

Hence 2w(A) = w(Pf(A)) = o(Pf(A)) = 2o(A) when w(A) = o(A)

30/47

Dealing with non-functionality

♦ Three main approaches

� Finding functional (tight) bounds

� Delimiting a wide family of well-behaved wqos

Ex: Wqos that verify w = o, Cartesian product of ordinals

30/47

Dealing with non-functionality

♦ Three main approaches

� Finding functional (tight) bounds

� Delimiting a wide family of well-behaved wqos

Ex: Wqos that verify w = o, Cartesian product of ordinals

� the third one will amaze you!

30/47

Bounding ordinal invariants

Upper bounds

Finding upper bound : Residual equations

♦ Residuals of a wqo

A<x = { y ∈ A | y < x }
A⊥x = { y ∈ A | y ⊥ x }
A>x = { y ∈ A | y �≥ x }
A �≥x = { y ∈ A | y �≥ x }

= A<x ∪ A⊥x

♣ Ex: Residuals of N× N
. a.k.a. ω × ω

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

�

31/47

Finding upper bound : Residual equations

♦ Residual equations

o(A) = sup
x∈A

o(A �≥x) + 1

h(A) = sup
x∈A

h(A<x) + 1

w(A) = sup
x∈A

w(A⊥x) + 1

♣ Ex: Residuals of N× N
. a.k.a. ω × ω <

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

�

31/47

Link with tree rank definition

∅

x1 x2 xk.

x1 > x2 x1 >

x1 > · · · > xk

rk = 0

γ0 γα

rk(x1) = sup(γα + 1)

h(A) = sup(rk(x) + 1)

Link with tree rank definition

∅

x1 x2 xk.

x1 > x2 x1 >

x1 > · · · > xk

rk = 0

γ0 γα

rk(x1) = sup(γα + 1)

h(A) = sup(rk(x) + 1)

= h(A<x1)

x1 > dec. seq. in A<x1

32/47

Link with tree rank definition

∅

x1 x2 xk.

x1 > x2 x1 >

x1 > · · · > xk

rk = 0

γ0 γα

rk(x1) = sup(γα + 1)

h(A) = sup(rk(x) + 1)= sup(h(A<x) + 1)

= h(A<x1)

x1 > dec. seq. in A<x1

32/47

Finding upper bound : Residual equations

♦ Residual equations

o(A) = sup
x∈A

o(A �≥x) + 1

h(A) = sup
x∈A

h(A<x) + 1

w(A) = sup
x∈A

w(A⊥x) + 1

♣ Properties
� o(A �≥x) < o(A),

� h(A<x) < h(A), o(A<x) < o(A)

� w(A⊥x) < w(A), o(A⊥x) < o(A)

� However, (N× N)>x contains a

copy of N× N

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<
<

<
<

<
<

�

33/47

Example: Using the residual equations

♣ How to compute w(α× β) (From Abraham (1987))

α

β

(x1, x2)

α β

x1

x2

α× β

Example: Using the residual equations

♣ How to compute w(α× β) (From Abraham (1987))

α β

x1

x2

α× β

(> x1)

(< x2)
(< x1)

(> x2)
α

β

(x1, x2)

Example: Using the residual equations

♣ How to compute w(α× β) (From Abraham (1987))

α β

x1

x2

α× β

(> x1)

(< x2)
(< x1)

(> x2)
x2

α− x1
(>,<)

x1

β − x2

� (<,>)residuation

(α× β)⊥(x1,x2)

Example: Using the residual equations

♣ How to compute w(α× β) (From Abraham (1987))

α β

x1

x2

α× β

(> x1)

(< x2)
(< x1)

(> x2)
x2

α− x1
(>,<)

x1

β − x2

� (<,>)residuation

(α× β)⊥(x1,x2)

w(α× β) = supx1,x2(w((α− x1)× x2)⊕ w(x1 × (β − x2)) + 1)

34/47

Same method, for three ordinals

α1 α2 α3

x1
x2 x3

Same method, for three ordinals

α1 α2 α3

x1
x2 x3

(>,<,>) (<,>,>)

(<,>,<) (<,<,>)

(>,>,<)

(>,<,<)

Same method, for three ordinals

α1 α2 α3

x1
x2 x3

(>,<,>) (<,>,>)

(<,>,<) (<,<,>)

(>,>,<)

(>,<,<)

Same method, for three ordinals

α1 α2 α3

x1
x2 x3

(>,<,>) (<,>,>)

(<,>,<) (<,<,>)

(>,>,<)

(>,<,<)

x x xx xx
�≤�

w(α1 × α2 × α3) ≤ supx1,x2,x3(w((α1 − x1)× (α2 − x2)× x3)

⊕(w((α1 − x1)× x2 × x3)⊕ · · ·+ 1)

35/47

Same method, for three ordinals

α1 α2 α3

x1
x2 x3

(>,<,>) (<,>,>)

(<,>,<) (<,<,>)

(>,>,<)

(>,<,<)

x x xx xx
�≤�

w(α1 × α2 × α3) ≤ supx1,x2,x3(w((α1 − x1)× (α2 − x2)× x3)

⊕(w((α1 − x1)× x2 × x3)⊕ · · ·+ 1)

♦ The method of residuals provides an upper bound. . .

How can we prove a lower bound ?

35/47

Bounding ordinal invariants

Lower bounds

Games for lower bound

♦ Game: α vs w(X)
� Initial configuration:

� Odile : γ = α,

� Antoine : S = ∅
� Each turn:

� Odile : γ ← γ� < γ

� Antoine : S ← S :: x ,

Requires: S antichain

� End: First one who can’t

play loses!

♣ Lower bound: we want a winning strategy for Antoine

36/47

Reasoning with games: Slices

♦ Imagine this is a wqo. . .

37/47

Reasoning with games: Slices

Slice X into disjoint subsets whose width

is known (Antoine has a winning strategy)

Reasoning with games: Slices

Slice X into disjoint subsets whose width

is known (Antoine has a winning strategy)

Can Antoine combine his strategies on the slices

into a winning strategy on X against Σ w(slices)

Reasoning with games: Slices

Slice X into disjoint subsets whose width

is known (Antoine has a winning strategy)

Can Antoine combine his strategies on the slices

into a winning strategy on X against Σ w(slices)

Assume he finished playing on the first slices

What is left of the next slice?

Reasoning with games: Slices

Slice X into disjoint subsets whose width

is known (Antoine has a winning strategy)

Can Antoine combine his strategies on the slices

into a winning strategy on X against Σ w(slices)

Assume he finished playing on the first slices

What is left of the next slice?

We need w(residual) = w(slice)

Reasoning with games: Slices

Slice X into disjoint subsets whose width

is known (Antoine has a winning strategy)

Can Antoine combine his strategies on the slices

into a winning strategy on X against Σ w(slices)

Assume he finished playing on the first slices

What is left of the next slice?

We need w(residual) = w(slice)

→ Quasi-incomparable subsets

38/47

Example: w(A× (B + · · ·+ B))

A

B1

B2

B3

Bk

Y

...

a

b

Example: w(A× (B + · · ·+ B))

A

B1

B2

B3

Bk

Y

...

a

b
A≥...

A self-residual:
A≥... contains copy of A

♣ If A self-residual

Then w(A× (B + · · ·+ B)) = w(A× B) + · · ·+ w(A× B)

39/47

Study family of examples

Cartesian product of ordinals

A family to study width of CP

♣ Computing w(α1 × · · · × αn)
� is functional

� w(α× β) is known (Abraham

(1987))

� Easy to slice into

quasi-incomparable subsets

ωα1 × · · · × ωαn

� New insight for CP of non-linear

wqos
ωω + ω ω · 3 ω3 + ω2 + 1

ωω

ω

ω

ω

ω

ω3

ω2

40/47

Cartesian product of ordinals

♣ Width of CP of n ordinals

w(α1 × · · · × αn) =
�

s∈l1×···×lk−1,

min s=0

ωη(α1,s(1),...,αk−1,s(k−1)) ⊗


 �

k≤i≤n

αi




♦ When does one have w = o?

w(α1 × · · · × αn) = o(α1 × · · · × αn) iff

� ∃i s.t. αi = ωβ

� ∃j �= k s.t. αj and αk are divisible by ωω

41/47

Cartesian product of ordinals

♦ New insight for the CP of non-linear wqos

Let o(Ai) = αi . Then

w(α1×· · ·×αn) ≤ w(A1×· · ·×An) ≤ o(A1×· · ·×An) = o(α1×· · ·×αn)

♣ Translating conditions

w(A1 × · · · × An) = o(A1 × · · · × An) if

� ∃i s.t. o(Ai) = ωβ

� ∃j �= k s.t. o(Aj) and o(Ak) are divisible by ωω

42/47

Third approach

Not functional in o,w, h? Never mind! Let’s

find some new invariants

The fourth ordinal invariant

Definition (Friendly order type)

o⊥(X) = rank of the tree of open-ended bad sequences

⊥

The fourth ordinal invariant

Definition (Friendly order type)

o⊥(X) = rank of the tree of open-ended bad sequences

⊥

⊥

⊥

⊥

⊥

43/47

The fourth ordinal invariant

Theorem (Width of Mo)

w(Mo(X)) = ωo⊥(X)

44/47

The fourth ordinal invariant

Theorem (Width of Mo)

w(Mo(X)) = ωo⊥(X)

Space o, h,w o⊥

?

?

?

♦ How to compute the fot?

� Exists X � ⊆ X such that Bad(X �) ⊆ Bad⊥(X)

� limit part(o(str(X))) ≤ o⊥(X) ≤ o(str(X)) with

str(X) = { x ∈ X | ∃y ∈ X , y ⊥ x }
� w(X)− 1 ≤ o⊥(X)

� if w(A) = o(A) limit, then o⊥(X) = o(X)

� o⊥(A � B) = o(A)⊕ o(B)

44/47

. . . and a finite invariant, the number of maximal elements

∇ · (ω + 1)

o = ω · 3 + 2

max elt = 2

Δ · (ω + 1)

o = ω · 3 + 1

max elt = 1

Theorem (M.o.t. of the direct product)

o(A) · predk(o(B)) + o(A)⊗ k if max elt(B) = k

45/47

Conclusion

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ≥ w(o(A)× o(B))

A · B
o(A) · predk (o(B)) + o(A)⊗ k

h(A) · h(B) w(A)� w(B)
if max elt(B) = k

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ω

�o(A)−1

Mo(A) ωo(A) ωh(A) ωo⊥(A)

Pf(A) ≤ 2o(A) ≤ 2h(A) ≥ 2w(A)

46/47

Conclusion

♣ Measuring well quasi-orders

� is fun!

� Often not functional but. . . everyday-life wqos are well-behaved!

� Elementary family of wqos

E := α ≥ ωωmult. indec. E1�E2 E1×E2 M�(E) Mo(E) E ∗ Pf(E)

� Application in well-structured transition systems

47/47

Conclusion

♣ Measuring well quasi-orders

� is fun!

� Often not functional but. . . everyday-life wqos are well-behaved!

� Elementary family of wqos

E := α ≥ ωωmult. indec. E1�E2 E1×E2 M�(E) Mo(E) E ∗ Pf(E)

� Application in well-structured transition systems

♦ Open questions

� New invariants:

� Computing the fot

� Is there an invariant that would make CP and Pf functional?

� New operations: Infinite words, variants of trees, graph minor, . . .

47/47

Bibliography i

Parosh Aziz Abdulla and Bengt Jonsson.

Undecidable verification problems for programs with unreliable

channels.
Inf. Comput., 130(1):71–90, 1996.
doi:10.1006/INCO.1996.0083.

U. Abraham.

A note on Dilworth’s theorem in the infinite case.

Order, 1987.

U. Abraham and R. Bonnet.

Hausdorff’s theorem for posets that satisfy the finite antichain

property.

Fund. Math., 1999.

Bibliography ii

A. Blass and Y. Gurevich.

Program termination and well partial orderings.

ACM Trans. Computational Logic, 2008.

D. H. J. de Jongh and R. Parikh.

Well-partial orderings and hierarchies.

Indag. Math., 1977.

M. Džamonja, S. Schmitz, and Ph. Schnoebelen.

On ordinal invariants in well quasi orders and finite antichain

orders.

In Well Quasi-Orders in Computation, Logic, Language and

Reasoning, volume 53 of Trends in Logic. 2020.

Bibliography iii

Alain Finkel.

Decidability of the termination problem for completely specified

protocols.

Distributed Comput., 1994.

I. Kř́ıž and R. Thomas.

On well-quasi-ordering finite structures with labels.

Graphs and Combinatorics, 1990.

I. Kř́ıž and R. Thomas.

Ordinal types in Ramsey theory and well-partial-ordering theory.

In Mathematics of Ramsey Theory, Algorithms and Combinatorics.

1990.

Bibliography iv

D. Schmidt.

Well-Partial Orderings and Their Maximal Order Types.
Habilitationsschrift, Heidelberg, 1979.
Reprinted as [?].

S. Schmitz and Ph. Schnoebelen.

Multiply-recursive upper bounds with Higman’s lemma.

In ICALP, 2011.

J. Van der Meeren, M. Rathjen, and A. Weiermann.

Well-partial-orderings and the big Veblen number.

Archive for Mathematical Logic, 2015.

Bibliography v

A. Weiermann.

A computation of the maximal order type of the term ordering

on finite multisets.

In Proc. 5th Conf. Computability in Europe (CiE 2009), Heidelberg,

Germany, July 2009, Lecture Notes in Computer Science, 2009.

List of articles

On wqos

� I. Vialard, On the Width of the Cartesian Product of Ordinals, Order

(2024).

� I. Vialard, Ordinal Measures of the Set of Finite Multisets, MFCS

2023.

� S. Abriola, S. Halfon, A. Lopez, S. Schmitz, Ph. Schnoebelen, I.

Vialard, Measuring well quasi-ordered finitary powersets, soon to be

submitted to MSCS.

On piecewise complexity and minimality index

� M. Praveen, Ph. Schnoebelen, I. Vialard, J. Veron, On the piecewise

complexity of words and periodic words, SOFSEM 2024

