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Definitions: Quasi-order
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Quasi-order:
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Definitions: Quasi-order
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Quasi-order:

reflexive,transitive,

can be partial

Ex: (2, 3) ≤× (5, 4)

but (1, 2) ⊥ (2, 1)

(N× N,≤×)(N× N,≤×)
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Some interesting sequences
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(0, 1)

(N× N,≤×)(N× N,≤×) — decreasing sequence

(5, 5) > (4, 4) > (4, 3)
> (2, 3) > (1, 1)



Some interesting sequences
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(0, 0)

(0, 1)

(N× N,≤×)(N× N,≤×) — decreasing sequence

— incomparable sequence
(or antichain)
i.e. pairwise incomparable

(1, 9) ⊥ (3, 8), (4, 7), (7, 5), . . .



Some interesting sequences
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(0, 1)

(N× N,≤×)(N× N,≤×) — decreasing sequence

— incomparable sequence
(or antichain)
i.e. pairwise incomparable

— bad sequence
i.e. pairwise non increasing

(1, 9) �≤ (3, 8), (4, 7), (7, 5), . . .
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Definitions: Well Quasi-Order
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(N× N,≤×)(N× N,≤×) — decreasing sequence

— antichain
i.e. pairwise incomparable

— bad sequence
i.e. pairwise non increasing

No infinite antichain
or decreasing seq

⇔

WQO



Definitions: Well Quasi-Order
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(N× N,≤×)(N× N,≤×) — decreasing sequence

— antichain
i.e. pairwise incomparable

— bad sequence
i.e. pairwise non increasing

No infinite antichain
or decreasing seq

⇔

WQO

⇔

No infinite bad seq
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Definitions: Well Quasi-Order

Some see wqos as wells

Blass & Gurevich (2008) No infinite antichain
or decreasing seq

⇔

WQO

⇔
No infinite bad seq
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Others see chairlift queue

My parents (2023)
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Motivations

♦ Reasons to study wqos

� “It is fun” (Kř́ıž & Thomas (1990))
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Motivations

♣ Well-structured transition systems

Finkel (1994), Abdulla& Jonsson (1996)

� Set of configurations: WQO

� ≤ is upward-compatible

s1 s2

t1

≤
t2

≤
� Ex: Counter machines, Petri

nets, VASS, Lossy channel

systems . . .

Vector Addition Systems with

States

♦ Complexity and expressiveness

Schmitz& Schnoebelen(2011)

� Controlled bad sequences (even decreasing, or antichains)

� Can we bound the length of controlled sequences by measuring wqo?
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Measuring wqos

♣ Natural notions of measure when finite

Finite subsets of {1, 2, 3, 4} ordered by ⊆.
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Measuring wqos

♦ Let’s extend height and width to infinite wqos
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N× NN× N

Problem:

No largest decreasing sequence

No largest antichain
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Crash course on ordinal numbers

♦ Enumerate well-orders (i.e. linear wqos)

Cantor(1883)

0 < 1 < . . . < n < . . .
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♦ Enumerate well-orders (i.e. linear wqos)

Cantor(1883)
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Two operations to build well-orders:

Successor: Add an element on top

Limit: Infinite union of increasing well-orders is well-ordered
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Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

..
.

ω · n < . . .

Ordinal as transitive sets:
α = { β < α }



Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

..
.

ω · n < . . .

Ordinal as transitive sets:
α = { β < α }
Ex: ω = N, ω + 1 = N ∪ {ω}

ω

ω + 1

ω2

<
ω2
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Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Union of increasing sequence of well-orders is well-ordered

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

.
.
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<

ω2 . . .

..
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Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Union of increasing sequence of well-orders is well-ordered

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

.
.
.

ω · n < . . .

<

ω2 . . .

..
. <

ω3
. .
.
ωn

. .
.

12/47



Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Infinite union of increasing well-orders is well-ordered

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

.
.
.

ω · n < . . .

<

ω2 . . .

..
. <

ω3
. .
.
ωn

. .
.

< ωω



Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top
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Crash course on ordinals

♦ Enumerate linear wqos

Cantor(1883)

Two operations to build well-orders:

Successor: Add an element on top

Limit: Infinite union of increasing well-orders is well-ordered

0 < 1 < . . . < n < . . .

ω < ω + 1 < . . . < ω + n < . . .

ω · 2 < . . .

.
.
.

ω · n < . . .

<

ω2 . . .

..
. <

ω3
. .
.
ωn

. .
.

< ωω < ωω
ω
< . . . < ωω

..
.ω

< . . .

E0

<
..
.
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Measuring wqos

♣ Let’s extend height and width to infinite wqos with ordinals
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(0, 0)

(0, 1)

Width and height:

at least ω

N× NN× N
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Measuring wqos

♣ Let’s extend height and width to infinite wqos with ordinals

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

(0, 0)

(0, 1)

Width and height:

at least ω

Counting elements:

at least ω

N× NN× N

14/47



Measuring wqos

♣ Let’s extend height and width to infinite wqos with ordinals
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Ordinal invariants

Definition (Maximal order type, Width and Height)

�����

o(X )

w(X )

h(X )

= ordinal rank of the tree of





bad sequences

antichain sequences

decreasing sequences

in X .

Definition from Kř́ıž & Thomas(1990) (first definition of ordinal width)

First definition of maximal order type by De Jongh & Parikh(1977)
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Definition: Rank of well-founded trees

♣ Ex: Tree of decreasing sequences

∅

x1 x2 xk. . . . . .

x1 > x2 x1 > . . .. . .

x1 > · · · > xk

root: empty sequence

leaf: maximal decreasing sequence
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rk = 0

γ0 γα



Definition: Rank of well-founded trees

♣ Ex: Tree of decreasing sequences

∅

x1 x2 xk. . . . . .

x1 > x2 x1 > . . .. . .

x1 > · · · > xk

rk = 0

γ0 γα

rk(x1) = sup(γα + 1)



Definition: Rank of well-founded trees

♣ Ex: Tree of decreasing sequences

∅

x1 x2 xk. . . . . .

x1 > x2 x1 > . . .. . .

x1 > · · · > xk

rk = 0

γ0 γα

rk(x1) = sup(γα + 1)

h(X ) = sup(rk(x) + 1)
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Definition: Rank of well-founded trees

♣ Ex: Height of N

∅

2 3 n. . . . . .

2 > 1 2 > 0

2 > 1 > 0

10

1 > 0



Definition: Rank of well-founded trees

♣ Ex: Height of N

∅

2 3 n. . . . . .

2 > 1 2 > 0

2 > 1 > 0

10

1 > 0

0

0

0 0



Definition: Rank of well-founded trees

♣ Ex: Height of N

∅

2 3 n. . . . . .

2 > 1 2 > 0

2 > 1 > 0

10

1 > 0

0

0

0 0

1

1

2 3 n



Definition: Rank of well-founded trees

♣ Ex: Height of N

∅

2 3 n. . . . . .

2 > 1 2 > 0

2 > 1 > 0

10

1 > 0

0

0

0 0

1

1

2 3 n

h(N) = sup(n + 1) = ω

17/47



Measuring with games

♦ Game: α vs w(X )
� Initial configuration:

� Odile : γ = α,

� Antoine : S = ∅
� Player alternate:

� Odile picks γ� < γ

� Antoine extends S into

S :: x an antichain,

� End: You lose if you

cannot play anymore

18/47



Measuring with games

♦ Game: α vs w(X )
� Initial configuration:

� Odile : γ = α,

� Antoine : S = ∅
� Player alternate:

� Odile picks γ� < γ

� Antoine extends S into

S :: x an antichain,

� End: You lose if you

cannot play anymore

Theorem (Blass & Gurevich (2008))

� Antoine has winning strategy when Odile begins ⇔ α ≤ w(X )

� Odile has winning strategy when Antoine begins ⇔ α ≥ w(X )
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Example: Playing on the on disjoint sum

�

A B

≤
≥

Disjoint sum A � B

Theorem: o(A � B) = o(A)⊕ o(B) (De Jongh & Parikh(1977))
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Example: Playing on the on disjoint sum

�

A B

≤
≥

Disjoint sum A � B

Theorem: o(A � B) = o(A)⊕ o(B) (De Jongh & Parikh(1977))

Ex: (ωω + ω3)⊕ (ω5 + ω + 1) = ωω + ω5 + ω3 + ω + 1
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Example: Playing on the on disjoint sum

�

A B

≤
≥

Disjoint sum A � B

Theorem: o(A � B) = o(A)⊕ o(B) (De Jongh & Parikh(1977))

This theorem is easy to prove with games!
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Example: Playing on the disjoint sum

Odile Antoine

o(A) ⊕ o(B)

A B

�

o(A � B) ≤ o(A)⊕ o(B) if Odile wins when Antoine begins

o(A � B) ≥ o(A)⊕ o(B) if Antoine wins when Odile begins
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o(A) ⊕ o(B)

A B

�
α1 ⊕ o(B)
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Odile Antoine

o(A) ⊕ o(B)

A B

�
α1 ⊕ o(B)
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Example: Playing on the disjoint sum

Odile Antoine

o(A) ⊕ o(B)

A B

�
α1 ⊕ o(B)

α1 ⊕ β1

α1 ⊕ β2

o(A � B) ≤ o(A)⊕ o(B) if Odile wins when Antoine begins

o(A � B) ≥ o(A)⊕ o(B) if Antoine wins when Odile begins
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Other classical operations on WQOs

�

A B

≤

≥

Disjoint sum A � B
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A B

≤

≥

Disjoint sum A � B

+

A

B

≤

Direct sum A+ B
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A
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≤

Direct sum A+ B

×

A B

≤

≥
Cartesian product A× B
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Other classical operations on WQOs

�

A B

≤

≥

Disjoint sum A � B

+

A

B

≤

Direct sum A+ B

×

A B

≤

≥
Cartesian product A× B

≤

≥
≥

B
A

A

Lexicographic product A · B
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. . . And their ordinal invariants

Space M.O.T. Height Width

Disjoint sum A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

Direct sum A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

Cartesian prod. A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ?

Direct prod. A · B ? h(A) · h(B) w(A)� w(B)

22/47



. . . And their ordinal invariants

Space M.O.T. Height Width

Disjoint sum A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

Direct sum A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

Cartesian prod. A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ?

Direct prod. A · B ? h(A) · h(B) w(A)� w(B)

Fin. words A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

Fin. multisets
M�(A) ω

�o(A) h∗(A) ?

Mo(A) ωo(A) ? ?

Fin. Powerset Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020) 22/47



My contributions

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ≥ w(o(A)× o(B))

A · B o(A) · predk (o(B)) + o(A)⊗ k h(A) · h(B) w(A)� w(B)

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ω

�o(A)−1

Mo(A) ωo(A) ωh(A) ωo⊥(A)

Pf(A) ≤ 2o(A) ≤ 2h(A) ≥ 2w(A)
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Back in time

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ?

A · B ? h(A) · h(B) w(A)� w(B)

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ?

Mo(A) ωo(A) ? ?

Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)
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Quick look at the direct product

≤
≥

≥

B
A

A

Lexicographic product A · B

♦ I was told that o(A · B) = o(A) · o(B)

. . . but only the lower bound is true: o(A · B) ≥ o(A) · o(B)
Mistake noticed by Harry Altman (March, 2024)
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Quick look at the direct product

⊥
≤ ≤

⊥

≤ ≤

o = 3

h = 2

w = 2

Δ∇



Quick look at the direct product

(ω + 1) ·∇ (ω + 1) ·Δ



Quick look at the direct product

(ω + 1) ·∇ (ω + 1) ·Δ



Quick look at the direct product

o((ω + 1) ·∇) =

[(ω + 1) ⊕ (ω + 1)]

+

(ω + 1)

= ω · 3 + 2

o((ω + 1) ·Δ) =

[(ω + 1) ⊕ (ω + 1)]

+

(ω + 1)

= ω · 3 + 1

= o(ω + 1) · o(∇)
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What about the other operations?

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ?

A · B Not functional h(A) · h(B) w(A)� w(B)

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ?

Mo(A) ωo(A) ? ?

Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)
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Mo(A) ωo(A) ωh(A) Not functional
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Non functional example for Pf

ω

ω

ω

ω

ω

ω

ω

ω

Y1 = (ω + ω) � (ω + ω) Y2 = (ω � ω) + (ω � ω)

+ + +
�

�

�o = ω · 4

h = ω · 2

w = 2

f (Pf(Y1)) �= f (Pf(Y2)) for f = o, h,w
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Non functional example for Cartesian product and multiset ordering

X1 = H + H X2 = H + ω

H

H H

ω

+ +

o = ω · 2
h = ω · 2
w = ω

w(X1 × ω) �= w(X2 × ω) w(Mo(X1)) �= w(Mo(X2)) 29/47



Non functionality

What can we do?



Dealing with non-functionality

♦ Three main approaches

� Finding functional (tight) bounds
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Dealing with non-functionality

♦ Three main approaches

� Finding functional (tight) bounds

♣ Bounds on the finite powerset

From a joint article with Abriola, Halfon, Lopez, Schmitz, Schnoebelen

1 + o(A) ≤ o(Pf(A)) ≤ 2o(A)

1 + h(A) ≤ h(Pf(A)) ≤ 2h(A)

2w(A) ≤ w(Pf(A))
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Dealing with non-functionality

♦ Three main approaches

� Finding functional (tight) bounds

♣ Bounds on the finite powerset

From a joint article with Abriola, Halfon, Lopez, Schmitz, Schnoebelen

1 + o(A) ≤ o(Pf(A)) ≤ 2o(A)

1 + h(A) ≤ h(Pf(A)) ≤ 2h(A)

2w(A) ≤ w(Pf(A))

Hence 2w(A) = w(Pf(A)) = o(Pf(A)) = 2o(A) when w(A) = o(A)
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Dealing with non-functionality

♦ Three main approaches

� Finding functional (tight) bounds

� Delimiting a wide family of well-behaved wqos

Ex: Wqos that verify w = o, Cartesian product of ordinals
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Dealing with non-functionality

♦ Three main approaches

� Finding functional (tight) bounds

� Delimiting a wide family of well-behaved wqos

Ex: Wqos that verify w = o, Cartesian product of ordinals

� the third one will amaze you!
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Bounding ordinal invariants

Upper bounds



Finding upper bound : Residual equations

♦ Residuals of a wqo

A<x = { y ∈ A | y < x }
A⊥x = { y ∈ A | y ⊥ x }
A>x = { y ∈ A | y �≥ x }
A �≥x = { y ∈ A | y �≥ x }

= A<x ∪ A⊥x

♣ Ex: Residuals of N× N
. a.k.a. ω × ω
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Finding upper bound : Residual equations

♦ Residual equations

o(A) = sup
x∈A

o(A �≥x) + 1

h(A) = sup
x∈A

h(A<x) + 1

w(A) = sup
x∈A

w(A⊥x) + 1

♣ Ex: Residuals of N× N
. a.k.a. ω × ω <
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Link with tree rank definition

∅

x1 x2 xk. . . . . .

x1 > x2 x1 > . . .. . .

x1 > · · · > xk

rk = 0

γ0 γα

rk(x1) = sup(γα + 1)

h(A) = sup(rk(x) + 1)



Link with tree rank definition

∅

x1 x2 xk. . . . . .

x1 > x2 x1 > . . .. . .

x1 > · · · > xk

rk = 0

γ0 γα

rk(x1) = sup(γα + 1)

h(A) = sup(rk(x) + 1)

= h(A<x1)

x1 > dec. seq. in A<x1
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Finding upper bound : Residual equations

♦ Residual equations

o(A) = sup
x∈A

o(A �≥x) + 1

h(A) = sup
x∈A

h(A<x) + 1

w(A) = sup
x∈A

w(A⊥x) + 1

♣ Properties
� o(A �≥x) < o(A),

� h(A<x) < h(A), o(A<x) < o(A)

� w(A⊥x) < w(A), o(A⊥x) < o(A)

� However, (N× N)>x contains a

copy of N× N
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Example: Using the residual equations

♣ How to compute w(α× β) (From Abraham (1987))

α

β

(x1, x2)

α β

x1

x2

α× β
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(< x2)
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Example: Using the residual equations

♣ How to compute w(α× β) (From Abraham (1987))

α β

x1

x2

α× β

(> x1)

(< x2)
(< x1)

(> x2)
x2

α− x1
(>,<)

x1

β − x2

� (<,>)residuation

(α× β)⊥(x1,x2)

w(α× β) = supx1,x2(w((α− x1)× x2)⊕ w(x1 × (β − x2)) + 1)
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Same method, for three ordinals

α1 α2 α3

x1
x2 x3
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Same method, for three ordinals

α1 α2 α3

x1
x2 x3

(>,<,>) (<,>,>)

(<,>,<) (<,<,>)

(>,>,<)

(>,<,<)

x x xx xx
�≤�

w(α1 × α2 × α3) ≤ supx1,x2,x3(w((α1 − x1)× (α2 − x2)× x3)

⊕(w((α1 − x1)× x2 × x3)⊕ · · ·+ 1)
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Same method, for three ordinals

α1 α2 α3

x1
x2 x3

(>,<,>) (<,>,>)

(<,>,<) (<,<,>)

(>,>,<)

(>,<,<)

x x xx xx
�≤�

w(α1 × α2 × α3) ≤ supx1,x2,x3(w((α1 − x1)× (α2 − x2)× x3)

⊕(w((α1 − x1)× x2 × x3)⊕ · · ·+ 1)

♦ The method of residuals provides an upper bound. . .

How can we prove a lower bound ?
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Bounding ordinal invariants

Lower bounds



Games for lower bound

♦ Game: α vs w(X )
� Initial configuration:

� Odile : γ = α,

� Antoine : S = ∅
� Each turn:

� Odile : γ ← γ� < γ

� Antoine : S ← S :: x ,

Requires: S antichain

� End: First one who can’t

play loses!

♣ Lower bound: we want a winning strategy for Antoine
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Reasoning with games: Slices

♦ Imagine this is a wqo. . .
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Reasoning with games: Slices

Slice X into disjoint subsets whose width

is known (Antoine has a winning strategy)
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Slice X into disjoint subsets whose width

is known (Antoine has a winning strategy)

Can Antoine combine his strategies on the slices

into a winning strategy on X against Σ w(slices)
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What is left of the next slice?
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Reasoning with games: Slices

Slice X into disjoint subsets whose width

is known (Antoine has a winning strategy)

Can Antoine combine his strategies on the slices

into a winning strategy on X against Σ w(slices)

Assume he finished playing on the first slices

What is left of the next slice?

We need w(residual) = w(slice)

→ Quasi-incomparable subsets
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Example: w(A× (B + · · ·+ B))

A

B1

B2

B3

Bk
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b



Example: w(A× (B + · · ·+ B))

A

B1

B2

B3

Bk

Y

...

a

b
A≥...

A self-residual:
A≥... contains copy of A

♣ If A self-residual

Then w(A× (B + · · ·+ B)) = w(A× B) + · · ·+ w(A× B)
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Study family of examples

Cartesian product of ordinals



A family to study width of CP

♣ Computing w(α1 × · · · × αn)
� is functional

� w(α× β) is known (Abraham

(1987))

� Easy to slice into

quasi-incomparable subsets

ωα1 × · · · × ωαn

� New insight for CP of non-linear

wqos
ωω + ω ω · 3 ω3 + ω2 + 1

ωω

ω

ω

ω

ω

ω3

ω2
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Cartesian product of ordinals

♣ Width of CP of n ordinals

w(α1 × · · · × αn) =
�

s∈l1×···×lk−1,

min s=0

ωη(α1,s(1),...,αk−1,s(k−1)) ⊗


 �

k≤i≤n

αi




♦ When does one have w = o?

w(α1 × · · · × αn) = o(α1 × · · · × αn) iff

� ∃i s.t. αi = ωβ

� ∃j �= k s.t. αj and αk are divisible by ωω
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Cartesian product of ordinals

♦ New insight for the CP of non-linear wqos

Let o(Ai ) = αi . Then

w(α1×· · ·×αn) ≤ w(A1×· · ·×An) ≤ o(A1×· · ·×An) = o(α1×· · ·×αn)

♣ Translating conditions

w(A1 × · · · × An) = o(A1 × · · · × An) if

� ∃i s.t. o(Ai ) = ωβ

� ∃j �= k s.t. o(Aj) and o(Ak) are divisible by ωω
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Third approach

Not functional in o,w, h? Never mind! Let’s

find some new invariants



The fourth ordinal invariant

Definition (Friendly order type)

o⊥(X ) = rank of the tree of open-ended bad sequences

⊥



The fourth ordinal invariant

Definition (Friendly order type)

o⊥(X ) = rank of the tree of open-ended bad sequences

⊥

⊥

⊥

⊥

⊥
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The fourth ordinal invariant

Theorem (Width of Mo)

w(Mo(X )) = ωo⊥(X )
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The fourth ordinal invariant

Theorem (Width of Mo)

w(Mo(X )) = ωo⊥(X )

Space o, h,w o⊥

?

?

?

♦ How to compute the fot?

� Exists X � ⊆ X such that Bad(X �) ⊆ Bad⊥(X )

� limit part(o(str(X ))) ≤ o⊥(X ) ≤ o(str(X )) with

str(X ) = { x ∈ X | ∃y ∈ X , y ⊥ x }
� w(X )− 1 ≤ o⊥(X )

� if w(A) = o(A) limit, then o⊥(X ) = o(X )

� o⊥(A � B) = o(A)⊕ o(B)
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. . . and a finite invariant, the number of maximal elements

∇ · (ω + 1)

o = ω · 3 + 2

max elt = 2

Δ · (ω + 1)

o = ω · 3 + 1

max elt = 1

Theorem (M.o.t. of the direct product)

o(A) · predk(o(B)) + o(A)⊗ k if max elt(B) = k
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Conclusion

Space M.O.T. Height Width

A � B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A+ B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ≥ w(o(A)× o(B))

A · B
o(A) · predk (o(B)) + o(A)⊗ k

h(A) · h(B) w(A)� w(B)
if max elt(B) = k

A∗ ωω(o(A)±)
h∗(A) ωω(o(A)±)

M�(A) ω
�o(A) h∗(A) ω

�o(A)−1

Mo(A) ωo(A) ωh(A) ωo⊥(A)

Pf(A) ≤ 2o(A) ≤ 2h(A) ≥ 2w(A)
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Conclusion

♣ Measuring well quasi-orders

� is fun!

� Often not functional but. . . everyday-life wqos are well-behaved!

� Elementary family of wqos

E := α ≥ ωωmult. indec. E1�E2 E1×E2 M�(E ) Mo(E ) E ∗ Pf(E )

� Application in well-structured transition systems
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♣ Measuring well quasi-orders

� is fun!

� Often not functional but. . . everyday-life wqos are well-behaved!

� Elementary family of wqos

E := α ≥ ωωmult. indec. E1�E2 E1×E2 M�(E ) Mo(E ) E ∗ Pf(E )

� Application in well-structured transition systems

♦ Open questions

� New invariants:

� Computing the fot

� Is there an invariant that would make CP and Pf functional?

� New operations: Infinite words, variants of trees, graph minor, . . .
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